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Abstract The coupled dynamics of low lying

modes and various giant resonances are studied with

the help of the Wigner Function Moments method

on the basis of Time Dependent Hartree-Fock

equations in the harmonic oscillator model includ-

ing spin-orbit potential plus quadrupole-quadrupole

and spin-spin residual interactions [1]. New low ly-

ing spin dependent modes are analyzed. Special at-

tention is paid to the spin scissors mode.

Introduction

The idea of the possible existence of the collec-

tive motion in deformed nuclei similar to the scissors

motion continues to attract the attention of physi-

cists who extend it on various kinds of objects, not

necessary nuclei, (for example, magnetic traps, see

the review by Heyde at al [2]) and invent new sorts

of scissors, for example, the rotational oscillations

of neutron skin against a proton-neutron core [3].

In recent papers [1, 4] the WFM method was ap-

plied for the first time to solve the TDHF equations

including spin dynamics As a first step, only the

spin-orbit interaction was included in the consid-

eration [4], as the most important one among all

possible spin dependent interactions because it en-

ters into the mean field. The most remarkable result

was the discovery of a new type of nuclear collective

motion: rotational oscillations of ”spin-up” nucle-

ons with respect of ”spin-down” nucleons (the spin

scissors mode). It turns out that the experimentally

observed group of peaks in the energy interval 2-4

MeV corresponds very likely to two different types

of motion: the conventional (orbital) scissors mode

and the spin scissors mode.

The aim of the work [1] is to get a qualitative un-

derstanding of the influence of the spin-spin force on

the new states analyzed in [4], as, for instance, the

spin scissors mode. As a matter of fact we will find

that the spin-spin interaction does not change the

general picture of the positions of excitations de-

scribed in [4]. The most interesting result concerns

the B(M1) values of both scissors modes – the spin-

spin interaction strongly redistributes M1 strength

in the favour of the spin scissors mode, that allows

us to give a tentative explanation of recent experi-

mental findings [5, 6].

TDHF equation and model

Hamiltonian

We consider the TDHF equation in coordinate

space keeping all spin indices:

i~〈r| ˙̂ρ|r′′〉ss”
=

∑

s′

∫

d3r′
(
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We do not specify the isospin indices in order to

make the formulae more transparent.

¿From the technical point of view it is more con-

venient to work with the Wigner function f(r,p)

instead of density matrix 〈r|ρ̂|r′〉. To this end

we rewrite the expression (1) with the help of the

Wigner transformation: By means of the Wigner

transformation [7] the following set of equations for

the Wigner functions f(r,p) with specified spin in-

deces is derived:
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where the functions h, f are the Wigner transforms

of ĥ, ρ̂ respectively, {f, h} is the Poisson bracket

of the functions f(r,p) and h(r,p) and {{f, h}} is

their double Poisson bracket, f± = f↑↑±f↓↓, h± =

h↑↑ ± h↓↓. The conventional notation ↑ for s = 1/2

and ↓ for s = −1/2 is used.

The microscopic Hamiltonian of the model, har-

monic oscillator with spin orbit potential plus sepa-

rable quadrupole-quadrupole and spin-spin residual
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interactions is given by (see [1, 4] for details)

H =

A
∑

i=1

[

p̂
2
i

2m
+

1

2
mω2

r
2
i − ηl̂iŜi

]

+ Hqq + Hss. (3)

Equations of motion

Integrating the set of equations (2) over phase

space with the weights

W = {r ⊗ p}λµ, {r ⊗ r}λµ, {p ⊗ p}λµ, and 1, (4)

where {r ⊗ r}λµ =
∑

σ,ν C
λµ
1σ,1νrσrν – tensor prod-

uct, C
λµ
1σ,1ν is the Clebsch-Gordan coefficient and

r1, r0, r−1 are cyclic coordinates [8], one gets dy-

namic equations for the following collective vari-

ables:
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P τς
λµ(t) =

∫∫

dr dp

(2π~)3
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where τ = n, p – isospin indices, ς = +,−, ↑↓, ↓↑ . By

analogy with isoscalar fn+fp and isovector fn
−fp

functions we call the functions f τ+ and fτ− and

the corresponding collective variables Xτ+

λµ (t) and

Xτ−
λµ (t) as spin-scalar and spin-vector ones.

We are interested in the scissors mode, the exci-

tation with Kπ = 1+, therefore, we only need the

part of dynamic equations with µ = 1. These equa-

tions are nonlinear due to quadrupole-quadrupole

and spin-spin interactions and will be solved in a

small amplitude approximation.

It is convenient to rewrite the dynamical equa-

tions in terms of isovector and isoscalar variables

Xλµ = Xn
λµ + X

p
λµ, X̄λµ = Xn

λµ − X
p
λµ. Then

the equations for the neutron and proton systems

are transformed into isovector and isoscalar ones.

Supposing that all equilibrium characteristics of the

proton system are equal to that of the neutron sys-

tem one decouples isovector and isoscalar equations.

We get the closed set of 19 equations [1].

Discussion and interpretation of the

results

Imposing the time evolution via eiΩt
for all vari-

ables one transforms dynamical equations into a set

of algebraic equations. Eigenfrequencies are found

as the zeros of its determinant. Excitation prob-

abilities are calculated with the help of the linear

response theory. The used spin-spin interaction is

taken from the paper [9]. The results of calcula-

tions without spin-spin interaction (variant I) are

compared with those performed with two sets of

constants Ks, q (variants II, III). The strength of

the spin-orbit interaction is taken from [10].

One can see from table 1 that the spin-spin inter-

action does not change the qualitative picture of the

positions of excitations described in [4]. It pushes

all levels up proportionally to its strength (20-30%

in the case II and 40-60% in the case III) without

changing their order. The most interesting result

concerns the relative B(M1) values of two low lying

scissors modes, namely the spin scissors (1, 1)− and

the conventional (orbital) scissors (1, 1)+.

The spin-spin interaction strongly redistributes

M1 strength in the favour of the spin scissors mode.

We tentatively want to link this fact to the recent

experimental finding in isotopes of Th and Pa [5].

The authors have studied deuteron and 3He-induced

reactions on 232Th and found in the residual nuclei
231,232,233Th and 232,233Pa ”an unexpectedly strong

integrated strength of B(M1) = 11 − 15 µ2
N in the

Eγ = 1.0 − 3.5 MeV region”. The B(M1) force in

most nuclei in [5] shows evident splitting into two

Lorentzians.

Quite similar results were obtained one year ear-

lier by A. S. Adekola et al [6]. They have stud-

ied the (γ, γ′) reaction on 232Th and found two

groups of levels with energy centroids E1 = 2.1 MeV

and E2 = 2.9 MeV having B(M1)1 = 2.52µ2
N and

B(M1)2 = 1.74µ2
N . The splitting E2 − E1 = 0.8

MeV and the ratio B(M1)1/B(M1)2 = 1.45 are in

good agreement with the results of [5] and with our

calculations.

Concluding remarks

In the work [1] we continued the investigation of

spin modes [4] with the Wigner Function Method.

The inclusion of spin-spin interaction does not

change qualitatively the described picture concern-

ing spin modes found in [4]. It pushes all levels up

without changing their order. However, it strongly

redistributes M1 strength between the conventional

and spin scissors mode in the favour of the last one.

We mentioned the recently appeared experimental

works [5, 6], where for the two groups of low ly-

ing magnetic states a stronger B(M1) transition for

the lower group with respect to the higher one was

found. Our theory can naturally predict such a sce-

nario with a non vanishing spin-spin force. It would

indeed be very exciting, if the results of [5, 6] had

already discovered the isovector spin scissors mode.

In the light of the above results, the study of spin

excitations with pairing included, will be the natu-

ral continuation of this work. Pairing is important

for a quantitative description of the orbital scissors
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Table 1: Isovector energies and excitation probabilities of 164Er. Deformation parameter δ = 0.25, spin-

orbit constant η = 0.36 MeV. Spin-spin interaction constants are: I – Ks = 0 MeV; II – Ks = 92 MeV,

q = −0.8; III – Ks = 200 MeV, q = −0.5. Quantum numbers (including indices ς = +, −, ↑↓, ↓↑) of

variables responsible for the generation of the present level are shown in the first column. For example:

(1, 1)− – spin scissors, (1, 1)+ – conventional scissors.

(λ, µ)σ Eiv, MeV B(M1), µ2
N B(E2), BW

I II III I II III I II III

(1,1)− 1.61 2.02 2.34 3.54 5.44 7.91 0.12 0.36 0.82

(1,1)+ 2.18 2.45 2.76 5.33 4.48 2.98 1.02 1.23 1.26

(0,0)↓↑ 12.80 16.81 20.02 0.01 0.01 0.04 0.04 0.13 0.52

(2,1)− 14.50 18.52 21.90 0.01 0.02 0.34 0.03 0.13 4.29

(2,2)↑↓ 16.18 20.61 24.56 0.02 0.23 0.03 0.18 3.09 0.44

(2,0)↓↑ 16.20 22.65 27.67 0 0.03 0 0 0.39 0.02

(2,1)+ 20.59 21.49 22.42 2.78 2.19 1.77 35.45 30.47 27.43

mode. The same is expected for the novel spin scis-

sors mode discussed here.
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